Data Abstraction Strategies for Data Science
    • 2 Years

      Information Technology

      Compare 33 Now

    • 2 Years

      Fashion Designings

      Compare 33 Now

    • 2 Years

      Architecture and Planning

      Compare 33 Now

    • 2 Years

      Performing and Fine Arts

      Compare 33 Now

    • 2 Years

      Philosophy and Research

      Compare 33 Now

    • 2 Years

      Pharmaceutics Science

      Compare 33 Now

    • 2 Years

      Law Studies

      Compare 33 Now

    • 2 Years

      Agricultural

      Compare 33 Now

    • 2 Years

      Applied Sciences

      Compare 33 Now

    • 2 Years

      Hotel Management

      Compare 33 Now

    • 2 Years

      Computer Science & Applications

      Compare 33 Now

    • 2 Years

      Physical Education and Sports

      Compare 33 Now

    • 2 Years

      Journalism and Mass Communication

      Compare 33 Now

    • 2 Years

      Social Science and Humanities

      Compare 33 Now

    • 2 Years

      Health Sciences

      Compare 33 Now

    • 2 Years

      Commerce and Management

      Compare 33 Now

    • 2 Years

      Architecture & Planning

      Compare 33 Now

    • 2 Years

      Engineering & Technology

      Compare 33 Now

    • 2 Years

      Performing & Fine Arts

      Compare 33 Now

    • 2 Years

      Philosophy & Research

      Compare 33 Now

    • 2 Years

      Computer Science And Applications

      Compare 33 Now

    • 2 Years

      Fashion Designing

      Compare 33 Now

    • 2 Years

      Journalism & Mass Communication

      Compare 33 Now

    • 2 Years

      Hospitality Management

      Compare 33 Now

    • 2 Years

      Physical Education & Sports

      Compare 33 Now

    • 2 Years

      Social Science & Humanities

      Compare 33 Now

    • 2 Years

      Pharmaceutical Science

      Compare 33 Now

    • 2 Years

      Applied Science

      Compare 33 Now

    • 2 Years

      Legal Studies

      Compare 33 Now

    • 2 Years

      Agriculture

      Compare 33 Now

    • 2 Years

      Health Science

      Compare 33 Now

    • 2 Years

      Commerce & Management

      Compare 33 Now

    • 2 Years

      Engineering and Technology

      Compare 33 Now

  • 0 Courses

    KIIT Online

    0 Courses

    HBTU Online

    0 Courses

    SRMU, Lucknow (U.P) Online

    0 Courses

    Institute of Management Studies (IMS) Noida, Online

    0 Courses

    Sanatan Dharma College, Ambala Online

    0 Courses

    B.M. Institute Of Engineering & Technology, Sonepat Online

    0 Courses

    TIT&S Bhiwani Online

    0 Courses

    IILM Institute of Business & Management, Gurgaon Online

    0 Courses

    Ganpati Institute of Technology andf Management Online

    0 Courses

    Global Research Institute of Pharmacy Online

    0 Courses

    St Andrews Institute of Technology and Management Online

    0 Courses

    Delhi Engineering College, Faridabad Online

    0 Courses

    Great Lakes Institute of Management -Gurgaon Online

    0 Courses

    JSS Academy of Technical Education Online

    0 Courses

    Wisdom school of management, Faridabad Online

    0 Courses

    Rishihood University Online

    0 Courses

    Shri Balwant Institute of Technology Online

    0 Courses

    Tilak Raj Chadha Institute of Management and Technology Online

    0 Courses

    World College of Technology and Management Online

    0 Courses

    BRCM College of Engineering and Technology Online

    0 Courses

    Panipat Institute Engineering and Technology Online

    0 Courses

    NIIT University Online

    0 Courses

    DPG Degree College Online

    0 Courses

    SGT University Online

    0 Courses

    Swami Devi Dyal Group of Professional Institutions Online

    0 Courses

    Maa Saraswati Institute of Engineering and Technology Online

    0 Courses

    Matu Ram Institute of Engineering & Management Online

    0 Courses

    Dr. BR AMBEDKAR UNIVERSITY, DELHI Online

    0 Courses

    Shiv Nadar University, Delhi, NCR Online

    0 Courses

    Jamia Hamdard University Online

    0 Courses

    Guru Gobind Singh Indraprastha University (GGSIPU) Online

    0 Courses

    O.P. Jindal Global University, Sonipat, Haryana Online

    0 Courses

    Dronacharya College of Engineering Online

    0 Courses

    PDM University Online

    0 Courses

    Delhi Institute Of Technology And Management Online

    0 Courses

    The NorthCap University Online

    0 Courses

    Hindu Institute of Management Online

    0 Courses

    Management Development Institute - Gurgaon Online

    0 Courses

    Sushant University (Formerly Ansal University), Gurgaon Online

    0 Courses

    Ganga Institute of Technology and Management Online

    0 Courses

    Amity University, Haryana Online

    0 Courses

    Shree Guru Gobind Singh Tricentenary University Online

    0 Courses

    MAHARISHI MARKANDESHWAR UNIVERSITY Online

    0 Courses

    Jagannath University, NCR Online

    0 Courses

    Jagannath University, NCR Online

    0 Courses

    CCSU , Merut Online

    0 Courses

    Baba Mast Nath University, Rohtak, Haryana Online

    0 Courses

    Rayat Bahra University Online

    36 Courses

    NIILM University, Kaithal, Haryana Online

    15 Courses

    Kalinga University Online

Data Abstraction Strategies for Data Science


Yashika

Apr 27, 2023
Data Abstraction Strategies for Data Science
Data abstraction is the process of reducing complex data sets to their essential characteristics, making it easier to understand and work with the data. It involves creating a simplified representation of the data by filtering out irrelevant information and focusing on the most critical aspects of the data set. Data abstraction plays a crucial role in data science by making it possible to analyze and extract insights from massive data sets efficiently.



Importance of Data Abstraction

Data abstraction helps data scientists to make sense of complex data sets, enabling them to extract meaningful insights from large data sets. It also helps to reduce data storage and processing costs by focusing on the most critical aspects of the data. Data abstraction also facilitates data visualization, making it easier to represent data visually and identify trends and patterns.

Types of Data Abstraction

Data Sampling:

Data sampling is a technique where data scientists take a subset of the data set to analyze and extract insights from it. It involves selecting a representative sample of the data set, ensuring that it retains the critical characteristics of the original data set. Data sampling is useful when working with large data sets, as it reduces the time and resources required to analyze the data.

Data Filtering:

Data filtering is a technique used to remove unwanted or irrelevant data from a data set. It involves identifying and removing data that does not contribute to the analysis or insights of the data set. Data filtering helps to simplify the data set, making it easier to work with and analyze.

Data Aggregation:

Data aggregation is a technique used to summarize data sets by combining and analyzing them. It involves combining multiple data sets into a single data set to extract insights and trends that may not be apparent in the original data sets. Data aggregation helps to reduce the complexity of the data set, making it easier to analyze and extract insights from.

Data Dimensionality Reduction:

Data dimensionality reduction is a technique used to reduce the number of variables in a data set. It involves identifying the most critical variables in the data set and eliminating the less important ones. Data dimensionality reduction helps to simplify the data set, making it easier to analyze and extract insights from.

Best Practices for Data Abstraction

Define Objectives:

Before starting any data abstraction process, it is essential to define the objectives of the analysis. This will help to determine the critical aspects of the data set that need to be retained and the irrelevant data that can be discarded.

Understand the Data Set:

To effectively abstract a data set, it is essential to have a thorough understanding of the data set's structure, characteristics, and underlying patterns.

Select Appropriate Abstraction Techniques:

There are various data abstraction techniques available, and it is essential to select the appropriate technique based on the specific requirements of the analysis.

Validate Abstraction Results:

After abstracting a data set, it is crucial to validate the results to ensure that the abstraction process has not affected the quality of the data.

Conclusion

Data abstraction is a critical component of data science, enabling data scientists to make sense of complex data sets efficiently. By reducing data complexity, data abstraction makes it easier to analyze and extract insights from large data sets. In this article, we have discussed the different data abstraction strategies and best practices that data scientists use to abstract data sets effectively.



Frequently Asked Questions (FAQs)


Q.Why is data abstraction important in data science?

A.Data abstraction helps to simplify complex data sets and make them more manageable and understandable. It allows data scientists to focus on the critical aspects of the data, which helps to reduce processing time and costs, and makes it easier to extract insights from the data.


Q.How can data abstraction improve data analysis?

A.Data abstraction improves data analysis by reducing the complexity of the data, making it easier to work with and analyze. By simplifying the data set, data scientists can identify trends and patterns that may not be apparent in the original data, leading to more accurate insights.


Q.What are some challenges associated with data abstraction?

A.One of the challenges of data abstraction is ensuring that the abstraction process does not affect the quality of the data. There is also the risk of losing important information during the abstraction process, which can impact the accuracy of the analysis.


Mappen is a tech-enabled education platform that provides IT courses with 100% Internship and Placement support. Mappen provides both Online classes and Offline classes only in Faridabad.


It provides a wide range of courses in areas such as Artificial Intelligence, Cloud Computing, Data Science, Digital Marketing, Full Stack Web Development, Block Chain, Data Analytics, and Mobile Application Development. Mappen, with its cutting-edge technology and expert instructors from Adobe, Microsoft, PWC, Google, Amazon, Flipkart, Nestle and Info edge is the perfect place to start your IT education.

Mappen in Faridabad provides the training and support you need to succeed in today's fast-paced and constantly evolving tech industry, whether you're just starting out or looking to expand your skill set.


There's something here for everyone. Mappen provides the best online courses as well as complete internship and placement assistance.

Keep Learning, Keep Growing.


If you are confused and need Guidance over choosing the right programming language or right career in the tech industry, you can schedule a free counselling session with Mappen experts.

Hey it's Sneh!

What would i call you?

Great !

Our counsellor will contact you shortly.